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Abstract 
Design is a fundamental, problem-oriented, purposeful, and comprehensive activity. Despite the widespread use of computers 

in architecture, more than three decades after their introduction, the design process is still predominantly carried out by 

humans, starting with hand-drawn sketches which are later translated into digital formats via software. This is due to the fact 

that computers lack inherent design intuition, which remains a significant challenge in automating the architectural design 

process. This study aims to explore a novel approach that integrates artificial intelligence (AI) algorithms for the automatic 

generation of architectural plans. The goal is to develop a system capable of producing designs that meet user requirements 

while adhering to established rules, regulations, and design standards. The central hypothesis of this research posits that by 

combining evolutionary algorithms with machine learning techniques, it is possible to create a process that allows machines 

to approximate a form of design intuition. The methodology of this research includes a combination of literature review, 

documentation analysis, and quantitative data analysis. The study employs genetic algorithms, supervised learning 
algorithms, and Python libraries. The findings indicate that using feature vectors for supervised learning can facilitate the 

identification of optimal designs, thereby introducing a degree of "relative intuition" into machines. Additionally, the 

application of genetic algorithms for exploring the design space and optimizing plans based on the dimensions of the user's 

land proves to be effective. Finally, by storing design process experiences through algorithms, it is possible to create a 

foundation for reinforcement learning, which improves the system’s performance over time. In conclusion, the study presents 

the Automated Design Intelligence (ADI) Theory as a new theoretical framework for automating architectural design, offering 

a potential shift in how design processes can be approached through AI and machine learning. 

Keywords: Machine learning, Genetic algorithms, Automated design intelligence. 

INTRODUCTION 

Computer-aided design (CAD) software has had a 
dramatic impact on architectural practice since the 

emergence of computers in academia in the 1950s, and 

especially since the introduction of personal 
computing in the 1980s. Although early researchers 

envisioned a wide-ranging future interaction between 

computers and human designers (Negroponte, 1969), 

the first computer tools to be widely adopted by 
architectural designers were computerized versions of 

traditional drafting and rendering tools. While they 
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allowed designers to produce content much faster than 

with traditional methods, they did not fundamentally 
change the process of design (Nagy, 2017). 

The concept of generative design, as described in 

this paper, addresses this limitation by tasking a 
computer to explore a design space semi-

autonomously, and then report back to the designer 

which options it considers promising for further 
analysis. Because a computer can process information 

much quicker than a human, such a system allows a 

much deeper exploration of complex design spaces. 

Traditionally, such an approach has been used to 
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optimize a given model to achieve maximum possible 

performance based on concrete objectives (Marler, 

2004). 
Computer does not have any inherent intuition 

about design and the human designer must explicitly 

describe to the computer how to determine which 
designs perform better than others. The model needs 

to be connected to a search algorithm that can control 

the input parameters of the model, get feedback from 
the metrics, and intelligently tune the parameters to 

find high-performing designs while also exploring the 

full possibilities of the design space. One of the most 

promising of these algorithms is the multi-objective 
genetic algorithm (MOGA) which uses principles of 

evolution to create sequential generations of designs 

and evolve them to contain higher-performing designs 
over time (Murata, 1995). 

The quantification of spatial experience has also 

been explored by a variety of authors. (Hillier, 1976). 
proposed a variety of analytical tools for studying 

spatial configurations which they called ‘space 

syntax’ (Peponis, 1998). extended this work by 

proposing a universal method for understanding plan 
topology through linear representation (Turner, 2001). 

Design is a fundamental, purposeful, pervasive, and 

ubiquitous activity and can be defined as the process 
of creating new structures characterized by new 

parameters, aimed at satisfying predefined technical 

requirements. It consists of several phases, which 

differ in details such as the depth of design, kind of 
input data, design strategy, procedures, methodology, 

and results (Renner, 2003). 

Goldberg presents an idealized framework for 
conceptual design in four components: problem, 

designer, alternative designs and design competition, 

and shows how evolutionary techniques (specifically 
genetic algorithms) can be thought of as a lower bound 

on the performance of a designer that uses 

recombinative and selective processes (Goldberg, 

1991). Rosenman has explored evolutionary models 
for non-routine designs (Rosenman, 1997) and has 

investigated the generation of creative house plans 

(later referred to as floorplans in this paper) using 
genetic algorithms (Rosenman, 1997) . 

The creation of floorplans has also been 

investigated by Gero and Schnier as an evolving 
representation problem that restructures the search 

space (Gero, 1995) by co-evolution of design and 

solution spaces (Poon, 1997) and using case-based 

reasoning by De Silva Garza and Maher (De Silva, 
2000). At the same time, collaborative systems have 

been the focus of studies into creativity and computer-

supported cooperative work (Wilson, 1991) since the 
early 90s. There has been a paradigm shift from 

computer-aided design systems to computer-

supported collaborative design systems (Peng, 2001). 

It has been argued that much of our intelligence and 

creativity results from interspaces. We present a 
collaborative interactive genetic algorithm 

implementation for our model to evolve floorplans and 

widget layout/style design, as a user-interface 
development tool (Banerjee, 2008). Most approaches 

probe possible placements in a design space (Preas, 

1979). implemented an exhaustive algorithm to select 
the rectangular arrangements satisfying constraints 

among all the possible generations. However, due to 

computational restrictions, the method could only 

handle layouts with up to ten rooms (Schneider, 2011) . 
Evolutionary algorithms have been applied to 

search layout possibilities by treating design variants 

via crossovers and mutation operators in these 
approaches. Evolutionary strategy is used to fit rooms 

into target envelopes while improving appropriately 

designed fitness functions. Furthermore, mutations are 
allowed during such evolution, for example, to switch 

rooms (crossover) in order to optimize connectivity 

(Knecht, 2010). Recently, an automated layout 

generation has been proposed to sample and 
efficiently explore the layout search space (Merrell, 

2010). The method, however, is not designed to 

support interactive design refinements. In a related 
attempt, (Harada, 1995). designed a system that allows 

users to interactively drag rooms, but the possible 

layouts are predefined. Specifically, the algorithm 

searches for a matched state that best reflects user 
intents from a set of constructed transformations for 

mapping states. Moreover, only limited sets of 

constraints are considered, and the method does not 
generalize to handle manufacturing constraints. More 

recently, physical and manufacturing considerations 

have also been explored in the context of geometric 
form finding (Umetani, 2012). Similarly, in this work, 

we focus on pre-cast concrete-based constructions and 

consider their implications in design and layout 

problems. 
The most common genre of FLP involves a finite 

number of rectangular building blocks or modules  

𝑀𝑖 (𝑖 = 1, 2 … 𝑁), representing various activities or 
functional units such as departments, machines, 

rooms, cells, activities, or spaces. The objective is to 

minimize the cost of inter-module flow by placing all 

the modules on the packing space without overlaps, in 

such a way that the edges of 𝑀𝑖 are parallel to the x 

and y axes respectively. It is a well-known  

NP-complete problem; thus, a verifiably optimal 
solution cannot be known even for modest-size 

problems (Ahmad A. R., 2005). The purpose is usually 

to minimize costs, time, or distance in the flow of 
material and occupants through different departments 

(Brotchie, 1971). 
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The methodologies vary from heuristic search 

methods (Liggett, 1981) and genetic algorithms (Lee, 

2005) to mixed-integer programming (Irohara, 2007) 
and threshold-accepting algorithms (Huang, 2010). 

These automated design techniques caught the 

attention of researchers from the field of architecture 
as they could potentially solve the problem of large 

spaces associated with hospitals and schools (Liggett, 

2000). 
Doulgerakis (Doulgerakis, 2007) used genetic 

programming with an agent-based approach to assign 

activities (space functions) to geometric rooms. In this 

case, the vertical circulation, and their consequent 
implications were ignored (Flack, 2011). Dolgrakis 

tested two methods of evolutionary computation, 

genetic algorithm, and genetic programming, and in 
multi-story buildings, proposed solutions to place the 

staircase as a fixed space in the problem, which is 

repeated at each level. 
There was no need to change the form and move 

the floors and this element was drawn separately in the 

plan. Beyond the issue of floor connections, 

Zimmerman used a rectangular partitioning method in 
which restrictions on several specific levels were 

applied, such as vertical wall alignments or recessed 

space constraints on walls and walls (Zimmermann, 
2005). This method was also considered for a long 

time in order to complete the previous methods. 

But over time, the goal of productive and 

computer-aided design is to plan living space based on 
the placement of objects in regular or irregular shapes 

by software in a specific architectural design by a 

designer, and this has become one of the most popular 
design methods. This is because of the widespread use 

in people's daily lives, such as placing books on 

bookshelves (Crasto D. , 2005), Placing cars in the car 
park, as discussed by (Lee J. Y., 2006), and arranging 

objects or pictures in PowerPoint slides share similar 

principles. Solving this problem is one of the most 

fascinating and challenging tasks researchers are 
trying to address (Keckeisen, 2004). 

The production of architectural designs requires 

spatial planning and the goal is to find practical places 
and dimensions for a set of interconnected objects that 

meet all design requirements and have the maximum 

design quality in terms of design preferences 
(Michalek, 2002). This is the need of architects and 

society because they have to come up with acceptable 

designs instead of non-optimal solutions. Computer 

technology was used in the mid-1960s for the 
structural implementation of architectural designs 

(Levin, 1964). Now, with advances in computational 

capabilities over the years and algorithm 
modifications, it seeks to solve such design problems 

and find practical solutions to minimize human 

interference in the design process, along with the dual 

challenge of addressing constraints. Topological and 

dimensional properties of spaces (Verma, 2010) . 
It is going back and forth the topological 

constraints control a set of spaces and the relationship 

between them and make them responsive to each other 
in order of spatial arrangement, while the dimensional 

constraints applied to space are dimensions that are 

possible for a particular space. Different researchers 
and architects have given different preferences to two 

sets of constraints and have considered different 

priorities in the automated design process (Thakur, 

2010). 
In fact, by examining the theoretical foundations of 

the previous research, the problem extracted is that the 

process of designing architectural plans is not a task 
that can only be done by machines and algorithms and 

also all the effective points and data can't be calculated 

and applied by the designer, rather, a method must be 
innovated that combines the original design by the 

designer with the optimization, plotting, and 

application of rules based on user needs by algorithms. 

The main objective of this research is to find a 
solution that can minimize the human interventions in 

the optimization process and achieve an ideal design, 

the primary design is somehow done from human 
studies and activities and ideas, and not like putting a 

book on a shelf, in fact, the goal is to achieve an 

appropriate method of automatic architectural plans 

production by artificial intelligence with the ability to 
identify the appropriate design based on user needs. At 

the same time, it can provide rules, regulations, and 

design standards based on the dimensions and sizes of 
the designed land . 

The research hypothesis now is that a process can 

be created by using evolutionary algorithms (genetics) 
and machine learning algorithms (k-means clustering) 

and (k-nearest neighbors) interactively and 

simultaneously so that this objective (automatic 

architectural plans production by artificial 
intelligence) is realized. 

BACKGROUND RESEARCH 

Table 1 summarizes key developments in the synthesis 

and optimization of architectural plans. Mitchell 

(1976) introduced the first theory, achieving sixteen 
possible positions for squares and rectangles. Two 

decades later, Jo and Gero (1996) simulated 

architectural plans using genetic algorithms. In 1997, 
researchers—Rosenman, Schnier, Gero, Kazakov, and 

Jagielski—advanced this approach by generating 

sample plans with genetic algorithms and genetic 
programming. 
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From 1998 to 1999, Garza and Maher, Bentley, 

Elezkurtaj and Franck, in a study using genetic 

algorithms and evolutionary strategy algorithms, were 
able to create architectural spatial combinations. 

Following research from 2001 to 2002, for the first 

time, they were able to generate architectural plans 
through genetic algorithms, sequential quadratic 

programming, and reproduction of simulations, in 

addition, from 2003 to 2008, attempts were made to 
generate architectural plans with genetic algorithms 

and genetic programming, led by Makris, Virirakis, 

Makris, Bausys and Pankrasovait, Homayouni, 

Doulgerakis, Banerjee et al., and Serag et al. 
From 2009 to 2011, research in this paradigm 

shifted from using single genetic algorithms or 

programming to combining genetic algorithms with 
other emerging computational techniques. 

Researchers such as Inoue and Takagi, Wong and 

Chan, and Benjamin Dillenburger integrated genetic 
algorithms with other methods to develop innovative 

architectural plans. Additionally, Thakur et al., de la 

Barrera Poblete, Knecht, and Flack introduced 

alternative generative approaches, expanding the 
possibilities for architectural design. Between 2011 

and 2012, Ricardo Lopes et al. and Reinhard Koenig 

advanced this work further by employing hierarchical 
algorithm methods to generate new spatial divisions 

for architectural plans. 

The method column of Table 1 highlights research 

conducted over the past decade, emphasizing a 

growing trend among researchers toward the 

combination of algorithms. The integration of hybrid 

algorithms has shown promising results in generating 
architectural plans that account for multi-factor design 

considerations. The hypotheses of these studies 

suggest that combining diverse artificial intelligence 
algorithms—such as genetic algorithms, optical hill 

climbing, and swarm intelligence—not only 

accelerates the plan generation process but also 
enables the inclusion of various environmental data, 

energy parameters, and design standards into the 

process while maintaining adequate quality. 

However, in prior studies, algorithm combinations 
have primarily occurred within the same category, 

such as combining genetic algorithms with genetic 

programming or hill climbing with genetic 
programming. These attempts focused on leveraging 

evolutionary algorithms to explore the design space 

and propose suitable solutions. Despite extensive 
testing, these approaches faced significant limitations. 

For example, they failed to consistently produce more 

than ten spatial elements without encountering 

detrimental mutations during the design process. 
These mutations, inherent to the structure of 

evolutionary algorithms (analogous to genetic 

mutations in nature), could be either beneficial or 
harmful. Additionally, evolutionary algorithms are 

time-intensive, requiring significant computational 

resources to explore the design space effectively. 

 

 

Table 1. Background of Plan Generation Research (Rodrigues, 2013). 

Year oF wD eD eW iD S fL eF bB aB oO sA Method  Researcher 

2010 gts  •  •       • GA/DA  Thakur et al  

2010 g     •       GA+VD  de la Barrera Poblete  

2010 gt     •   •    GA/ES+K-D  Knecht  

2011 gt     • •  •   • GA/GP  Flack  

2011             AH  Ricardo Lopes et al 

2012             AH  Reinhard Koenig 

2012 gt • • • • •   • • • • ES+SHC  Rodrigues  

2015  • •   • •  •   • GA/GP  Victor Calixto 

2019      • •  •   • GAN  Stanislas Chaillou 

2020   •   • •  •   • Graph2Plan  RUIZHEN HU 

2020  • •   • •  •   • GA  Maciej Nisztuk 

GA: Graph algorithm, SO: Synthesis and Optimization, GA: Genetic Algorithm, GP: Genetic Programming, ES: Evolutionary 

Strategy, SA: Simulated Annealing, SQP: Sequential Quadratic Programming, L: Lindenmayer System, VD: Vernoy Diagram, 

DA: Digestra Algorithm, SHC: Search of Hill Climbing, AH: Hierarchical Algorithm, Graph2Plan: Pixel to Pixel, t: Topological, 

h: Heating, c: Cooling, l: Lighting, s: Walking Distance, oF: Objective Function, wD: Wall Dimensions, eD: External Door,  

eW: Window, iD: Internal Door, S: Spaces, fL: Floors, st: Stairs, eL: Elevators, eF: Equipment- Furniture, bB: Building Area, 

aB: Adjacent Buildings, oO: Openings orientation, sL: Location, sA: Adjacent spaces. 
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The second group of studies involves deep learning 

algorithms, which often operate without incorporating 

evolutionary algorithms. Generative Adversarial 
Networks (GANs) have gained popularity in recent 

years for generating architectural plans. These 

algorithms rely on pixel-based representations of 
plans, simulating spatial arrangements by 

manipulating color pixels to reflect user concepts. 

However, this method has notable limitations, 
including a lack of scalability, as the architectural 

design inherently operates on scales measured in 

meters and centimeters rather than pixels. 

Furthermore, these pixel-based approaches cannot 
accommodate optimization processes or interpret 

regulatory frameworks, such as National Building 

Regulations. Consequently, GAN-based methods are 
often restricted to generating preliminary designs or 

conceptual ideas, leaving significant room for 

subjectivity and variability in outcomes. 
A review of prior research highlights two major 

distinctions in the present study. Firstly, this research 

introduces a novel approach that combines an 

evolutionary algorithm (genetic algorithm) with 
supervised learning techniques (e.g., k-means 

clustering) to improve plan generation. Secondly, it 

introduces the concept of utilizing user input as a 
numerical vector to guide the algorithm in 

understanding user requirements and generating 

designs aligned with environmental standards and 

conditions. 
The findings underscore that architectural design 

cannot be fully automated by removing the architect 

from the process. Instead, the architect's role is 
essential as a guide or trainer, providing the machine 

with curated architectural data and examples of 

optimized plans (as illustrated in Figure 1). The 
algorithm, trained on this data, can then adapt to 

climatic conditions, user preferences, and urban 

regulations to generate a design. Finally, the design 

can be plotted in architectural software and delivered 
to the user, ensuring a balance between automation 

and professional oversight. 

METHODOLOGY 

The proposed method is based on evolutionary 

algorithms (genetics) and machine learning (KNN and 
k-means clustering) to generate architectural plans 

called MLGAFPG, which is proposed to allocate 

space in a two-dimensional level for common urban 
lands. The MLGAFPG consists of two techniques, the 

first based on machine learning and the second on 

genetic algorithm. In the machine learning algorithm, 

the input information is entered by the user, and 
samples of architectural plans based on machine-

supervised learning have already been learned. 

The algorithm proposes designing a considered 
plan among several thousand learned models based on 

the user’s need and land data. Here, these samples are 

collected based on the most common dimensions of 

urban lands and completed according to architectural 
standards. Then, through the second algorithm, as 

genetic evolutionary algorithms and according to the 

specialized and professional preferences and 
limitations of architecture, by an evolutionary strategy 

(Genetic), the production process and matching the 

floor plans of the architectural floors begin with the 
dimensions of the user's mainland. 

This is a special two-step approach that can be used 

to produce architectural plans. In fact, in the first stage, 

architectural plans are trained to the machine learning 
algorithm as learnable examples, and then in the next 

stage, with the help of GA, in the process of several 

repetitions, it changes the geometric form and brings 
to the main coordinates of designing land. The aim of 

the GA stage is a local search for the most suitable 

position of the architectural plan spaces in the selected 
land based on common urban examples for design. 

With the help of GA, the best state is maintained in the 

stage of searching algorithm generation space, which 

is equal to the coordinate data of the spaces. GA is 
designed to search the areas among the sample spaces 

generated in the machine learning algorithm and the 

main dimensions are entered as land data. 

 

 

Fig 1. Changing the position and role of the architect in the design process 
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The proposed method of automated production of 

architectural plans generates a process in which a set 

of objects (spaces/rooms, exterior doors and windows, 
and interior doors) are drawn on a two-dimensional 

plane, a method in which topological relations, both 

geometric constraints and user requirements are 
satisfied. In fact, each floor map design produced is a 

set of plans learned by the machine learning algorithm 

and combined with user input information in a 
hierarchical manner. Each plan floor is made up of 

different spaces and elements, including the exterior 

windows, exterior and interior doors, and the floor of 

stages. This method can solve the main problem of 
mutation in the single evolutionary algorithms that 

result in the production of random spaces in more than 

8 or 10 spaces. 
Figure 2 illustrates a segment of the process for 

selecting and resizing architectural plans to align with 

the user-specified land dimensions. Initially, the 
machine learning algorithm selects the most 

appropriate design sample from the database of pre-

trained primary plans based on the user-defined 

features, as outlined in Table 2. Following this, the 
dimensions of the selected sample are adjusted to 

match the dimensions of the user's land using a genetic 

algorithm. 
Additionally, the system is designed to incorporate 

various supplementary conditions, including 

compliance with design regulations, energy 

optimization, economic cost analysis, integration of 

solar energy production systems, material modulation, 
and other advanced functionalities. These 

enhancements can be applied to the initial design plan 

to meet broader requirements. However, the current 
study focuses exclusively on the selection and 

dimensional adjustment of design samples. The 

methodologies for implementing the additional 
capabilities will be addressed in future research. 

DISCUSSION 

The need for interaction between machine learning 

algorithms and genetics algorithms is to build the 

automatic design intelligence of residential plans in 
Tehran city based on user needs and architectural 

criteria. In this research, the method of this interaction 

is analyzed and examined. To achieve this goal, steps 

must first be taken and the architectural data, which is 
qualitative and quantitative, turned into numbers. 

In Figure 3, we can see an example of the spatial 

relationships of the architectural plan, which has been 
converted to zero and one codes, and the arrangement 

of these zeros and ones can be input for the algorithm 

to learn the spatial relationships in the plans 
numerically. 

 

 

Fig 2. The Process of Changing the Dimensions of the Sample Plan for the Land Proposed by the User 

 

Fig 3. Construction of a Numerical Vector of the Spatial Relationships of Architectural Plans 
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In the following, Figure 4 shows how the genetic 

algorithm based on the search structure of the problem 

space can share the added area to the dimensions of 
the land among the available spaces vertically and 

horizontally and align the proposed plan for the user 

with it. In fact, in this algorithm, the goal is to achieve 
a plan where the user wants to receive a map based on 

the dimensions of his land and submit it to legal 

authorities, so the plan must comply with all designing 
rules and regulations and land dimensions. 

Figure 5 shows how the algorithm directs each 

space in the form of a square and rectangle with central 

control through rectangular points (x, y) in vertical and 

horizontal directions to match the added space to the 

dimensions of the trained plan by the machine to the 
main dimensions of the land in a two-way manner. 

Over time, this method classifies plans that have been 

generated with new dimensions, by non-supervised 
machine learning algorithms and adds in the memory 

of the algorithm’s automatic design intelligence as a 

new experience. These experiences will continue to be 
the basis for generating better plans by automated 

design intelligence algorithms. 

 
 

 

 

Fig 4. Matching the Dimensions of Plan Spaces by Genetic Algorithm with the Dimensions of the Main Ground 

 

 

 

 

Fig 5. Searching the Design Problem Space Using a Genetic Algorithm 
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As mentioned before, in the former automated 

designing methods, only evolutionary algorithms have 

been used and all spaces, openings, and 
communication spaces have been found and applied 

by the search method in problem space; but in this 

research, for the first time, a combination of two 
machine learning algorithm and the genetic algorithm 

will be the basis for designing architectural plans. To 

achieve the automatic design intelligence of 
architectural plans, the features that make up an 

architectural plan are first extracted and categorized 

by data analysis algorithms, as illustrated in Table 2. 

These are some of the features that differentiate 
architectural plans from one another. 

Here, in number 1, the user determines the design 

location, which is one of the cities, and in the second 
input, he enters the minimum and maximum width 

allowed for residential land, which is based on the 

most common dimensions built in the last 50 years. 
Additionally, the third input is the virtual length that 

is selectable for the land; the fourth input is the land 

type which is grouped into four parts: north, south, east, 

and west; the fifth input is the type of building in terms 
of typical villa, multi-story villa and apartment; the 

sixth input is the type of windows that are classified 

according to the personality and interest of people into 
large, small, medium and floor to ceiling; the seventh 

input is the number of floors from one to five, which is 

adjusted based on the number of common floors; the 

eighth input is the number of units that the user can 

specify; the ninth input is the number of rooms that can 

be specified as input data from 1 to 5 rooms. 

The tenth input is the number of resident 
population per unit, which is directly related to 

energy problems; the eleventh input is the parking lot 

orientation, which is on the right or left side of the 
building for left-hand and right-hand people; the 

twelfth input determines the location of the bedroom 

(Some people are interested in the bedrooms being in 
different directions and experiencing different 

lights). 

Thirteenth input is the kitchen orientation, which is 

determined by the user based on people's interests and 
tastes, the fourteenth input is the kitchen model from 

the ordinary type to an island one; the fifteenth input 

is the bathroom model, which has several models; the 
sixteenth input is a corridor that allows people to have 

a corridor in the house or need uniform spaces without 

a partition. Finally, the seventeenth to twentieth inputs 
are based on national regulations. These cases can 

determine the type of plan that automatic design 

intelligence will design for the user and draw in 

AutoCAD software. 
To make it easier to write functions and function 

calls in the problem statement process, subjects and 

inputs are abbreviated, and according to Table 3, each 
of the variables and input data is equivalent to a short 

abbreviation of the full subject. These data are then 

implemented as numerical data based on Figure 6 so 

that the machine can perceive and analyze them. 
 

 

Table 2. Information on Architectural Plan Features 

Row User input information User selection range 

1 Location of the city Tehran 

2 Width of the ground 7 to 20 

3 Length of the ground 10 to 25 

4 Land type North, South, Eastern, Western 

5 Building type Home, House, Apartment 

6 Window type Small, Medium, Large, Floor to ceiling window 

7 Number of floors 1 to 5 

8 Number of units 1 to 3 

9 Number of rooms 1 to 5 

10 Number of population 1 to 5 

11 Parking places Right or Left 

12 Bedroom location North, South, East, West 

13 Kitchen locations North, South, East, West 

14 Kitchen model Closed, Open, Kitchen Island 

15 Bathroom model Bathroom master, Bathroom and toilet, Bathroom 

16 Corridor Yes or No 

17 Stairs According to the regulations 

18 Elevator According to the regulations 

19 Lightwell According to the regulations 

20 Columns According to the regulations 
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Table 3. Nomenclature 

1 USR User selection range 

2 LC Location of the city 

3 WG Width of the ground 

4 LG Length of the ground 

5 LT Land type 

6 BT Building type 

7 WT Window type 

8 NF Number of floors 

9 NU Number of units 

10 NR Number of rooms 

11 NP Number of population 

12 PP Parking place 

13 BL Bedroom location 

14 KL Kitchen location 

15 KM Kitchen model 

16 BM Bathroom model 

17 COR Corridor 

18 ST Stairs 

19 EL Elevator 

20 LW Lightwell 

21 COL Columns 

22 N North 

23 S South 

24 E Eastern 

25 W Western 

26 Cal Construction area limit 

27 Ewth Exterior wall thickness 

28 HOM Home 

29 HOU House 

30 AP Apartment 

31 SM Small 

32 ME Medium 

33 LA Large 

34 FCW Floor-to-ceiling window 

35 Ri Right 

36 Le Left 

37 CLO Closed 

38 OPE Open 

39 KI Kitchen Island 

40 BMAS Bathroom master 

41 BTO Bathroom and toilet 

42 BAT Bathroom 

43 UIIV User input information vector 

44 COREX Exterior Corridor 

45 SMat Space matrix 

46 SPdir Space direction 

47 Midd Minimum door dimensions 

48 Miwd Minimum window dimensions 

49 MifH Minimum floor height 

50 MisL Minimum space length 

51 MisW Minimum space width 

52 MiA Minimum minimum area 

53 Gal Gross area limit 

54 Iwth Interior wall thickness 
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Fig 6. View of the Input Detection Algorithm and the Design Goal in Automated Design Intelligence 

 

Based on the MLGAFPG algorithm, which is the 
automatic design intelligence of plans, it receives 

input data from the user and then converts it into 

encrypted data, which will contain various numbers. It 

then analyzes those numbers and converts encrypted 

data into a single cryptographic vector like Figure 7. 
Then, the resultant automatic design suits the user's 

needs, calculates it using the mathematical relation in 

Figure 8, and provides the best plan design state based 

on instructions, learning, and experience to the user. 

Tehran LC =   

LT =   N,S,E,W 

N 
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E 
W 
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3 
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3 
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1 
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W 
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3 
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OPE 
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0 

1 
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1 
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No 
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1 

MLGAFPG 
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Fig 7. Converting Numerical Cryptographers to Machine Unit Vectors 

 

Based on Figure 6, the calculation of the similarity 
of the two data input vectors by the user and the data 

in the memory of automatic design intelligence 

learning begins here to reduce the complexity of the 
sample vector to two, the numbers 2, 3, 4, 2 and 1, −2, 

1, 3 are converted and then based on the above 

relation, the analogy operations of vector A and vector 
B are applied by the relation xi-yi, which can be 

observed according to Figure 6 as (2-1)2 +(3 +2)2 + 

(4-1)2 +(2-3)2, the product of xi-yi subtraction and 

their exponentiation is the equation √ (1 + 25 + 9 +1) 
that if we apply the addition operators, we will 

encounter the number √ (36) and then if we get it out 

from the radical, we will reach 6, which is the 
similarity of the two input vectors to the above 

formula. 

Based on the above formula of design intelligence, 
after recognizing the user's needs based on Figures 6, 

7, and 8 and perceiving the spaces and the way they 

are placed in the architectural plan, one should be able 

to adjust it based on national standards, rules, and 
regulations and optimized by energy topics and 

climatic data must also be applied by automatic design 

intelligence in the designing process. Elaboration on 
each case is beyond the scope of this article, so in 

future research, rules and regulations and spatial 

layout will be further discussed. 

According to Table 4, the minimum dimensions 
and sizes that must be observed in the design of 

architectural spaces have been extracted. It is stated 

that each space and element involved in architectural 
plans should have what dimensions, size, and 

orientation to be approved. It is also trained as shown 
in Figures 6, 7, and 8 and as vectors and numerical 

data to the automatic design intelligence of the plan, 

so that it can apply them in the designing process. 
Python programming language with its special 

libraries has been used to learn this data by the 

automatic design intelligence of architectural plans. 
 

d (X. Y)  = √∑ 𝑑(𝑥𝑖 − 𝑦𝑖)

𝑛
→

∙
𝑖=1

 

d (X. Y)  = ∑ |𝑥𝑖 − 𝑦𝑖|

𝑝
→

→
𝑖=1

 

Determine the Euclidean distance between u⃗ = 

(2,3,4,2) and v⃗ =(1,−2,1,3). 

D (u⃗ ,v⃗ ) = ∥u⃗ − v⃗ ∥ 

= √(2 − 1)2 + (3 − 2)2 + (4 − 1)2 + (2 − 3)2   

D (u⃗ ,v⃗ ) = ∥u⃗ − v⃗ ∥ =  √1 + 25 + 9 + 1  

D (u⃗ ,v⃗ ) = ∥u⃗ − v⃗ ∥ = √36  
D (u⃗ ,v⃗ ) = ∥u⃗ − v⃗ ∥ = 6 
 

Fig 8. The Formula for Calculating Each 

Cryptographic Vector with a Similar Vector in 

Cartesian Coordinates 

 

 
 

 

 

UIIV  0, 1, 0, 1, 0, 0, 1, 0, 0, 2, 1, 1, 1, 2, 2, 1 UIIV = 

0 

1 

0 

1

0 

2

0 

0 

1 

0 

0 

2 

1 

1 

1 

2 

2 

1 
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Table 4. Minimum Rules and Regulations to be Observed in the Design of Plans 

Level Name Space SMat SPdir Midd Miwd MifH MisL MisW MiA 

L1 

Corridor Entrance 0 - 1 m - 3/24 - 1/40 - 

Corridor  0 - 1 m - 3/24 - 1/10 - 

bedroom 1 East 90 cm 1/8 3/24 - 2/70 12 

bedroom 1 East 90 cm 1/8 3/24 - 2/5 6/5 

Living room 1 South 1 m 1/8 3/24 - 2/70 12 

Kitchen 2 North 1 m 1/8 3/24 - 2/15 7/5 

Parking 0 - 3 m - 2/88 5 2/5 12/5 

Bathroom 2 West 80 cm 1/8 3/24 - 1/20 - 

Balcony 1 East 80 cm - 1/10 1/30 1/20 1/56 

W.C 2 West 80 cm 1/8 3/24 1/20 1/10 - 

 

After learning the standards and minimum criteria 

for design by automated design intelligence, the 
spatial relationships of the plans and neighborhoods 

should be created by the spatial relations matrix of 

Figure 10, and this section should be simultaneous 

with the application of the standards along with 
equalization of the dimensions of the userland input 

that its infrastructure and build density, which has 

already been done in the data analysis section. 
This starts the designing process. In fact, after 

receiving input information and converting it into 

cryptographs, and recognizing the user's needs 

automatic design intelligence tries to analyze 
information such as dimension, size, occupancy level, 

density, climate, and other basic variables. After 

analyzing, classifying, and converting them to 
cryptographic vectors, it designs and locates by 

referring to the training learned from different types of 

plans. 
This process is similar to reading cryptographic 

vectors; Climate, criteria, and other design variables 

will continue, and at the same time, with the help of 

genetic algorithms, the dimensions of learning plans 

or automated design intelligence experiences will be 
closer to the dimensions of the standard occupancy 

level, to the extent that input dimensions and machine 

drawing dimensions to be the same. The whole 

process takes 50 to 100 seconds from the time the 
information is received by the algorithm to the time it 

is analyzed, grouped, and drawn in AutoCAD 

software and later stored and sent to the user according 
to Figure 9. 

Based on Figure 10, In order for the automatic 

design intelligence to be able to draw the plans 

required by the user accurately and with the correct 
spatial relations, it is necessary to learn the spatial 

layout of the machine in the language of zero-one 

codes. To do so, first, a matrix from spatial layout is 
defined in the form of zero-one codes that if there is a 

connection between two spaces, the number one is 

used. If there is no number zero, and if there is a space 
inside another space with a partition door, the number 

two is used. 

 
 

 

Fig 9. Calculation of Analysis Time and Application of Design Process by Automated Design Intelligence 
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Fig 10. A matrix of Spatial Relationships and Its Transformation into a Plan by Automated Design Intelligence 

 

Notably, this method is used for columns and 
positioning doors and windows and their orientation, 

and after the matrices are prepared, it is written in 

Python programming language as special codes in 
combination with the library of artificial intelligence. 

Therefore, it can draw its automatic design 

intelligence as in Figures 11 to 16 in AutoCAD 

software. 

This is an example of plans that automatic design 
intelligence has calculated, designed, and drawn the 

occupancy level after entering data based on user 

interest and applying designing criteria and national 
building standards in a typical floor with spaces such 

as bedroom, kitchen, living room, parking, bathroom 

and toilet for a 10×20 land. 

 

S 1 

S 2 

S 3 

S 4 

S 5 

S 6 

S 7 

S 8
 

0   0   0    0    0   0    0   0 

0   0   0    0    0   1    0   0 

0   0   0    0    0   1    0   0 

0   0   0    0    1   0    0   0 

0   0   0    0    0   1    0   0 

0   1   1    0    1   0    1   0 

0   0   0    0    0   1    0   1 

0   0   0    0    0   0    1   0 

Design 1= Design 2= 

S 1 

S 2 

S 3 

S 4 

S 5 

S 6 

S 7 

S 8  

S1  S2  S 3 S 4 S 5 S 6 S 7 S 8 

0   1   0    0    0   1    0   0 

1   0   0    0    0   0    0   0 

0   0   0    0    0   1    0   0 

0   0   0    0    0   1    0   0 

0   0   0    0    0   0    0   0 

1   0   1    1    0   0    1   0 

0   0   0    0    0   1    0   1 

0   0   0    0    0   0    1   0 

S1  S2  S 3 S 4 S 5 S 6 S 7 S 8 

Design 5= 

S 1 

S 2 

S 3 

S 4 

S 5 

S 6 

S 7 

S 8 

S 9 

S1  S2  S 3 S 4 S 5 S 6 S 7 S 8 S9 

0   0   0    0    0   0    0   0   0 

0   0   0    0    0   1    0   0   0 

0   0   0    1    0   0    0   0   0 

0   0   0    0    1   0    1   1   0 

0   0   0    1    0   0    0   0   0 

0   1   0    0    0   0    0   1   0 

0   0   0    1    0   0    0   0   1 

0   0   0    0    0   0    0   1   0 

Design 6= 

S 1 

S 2 

S 3 

S 4 

S 5 

S 6 

S 7 

S 8 

S 9 

S1  S2  S 3 S 4 S 5 S 6 S 7 S 8 S9 

0   1   0    0    0   0    1   0   0 

1   0   0    0    0   0    0   0   0 

0   0   0    0    0   0    1   0   0 

0   0   0    0    0   0    1   0   0 

0   0   0    0    0   0    1   0   0 

0   0   0    0    0   0    0   0   0 

1   0   1    1    1   0    0   1   0 

0   0   0    0    0   0    1   0   1 

0   0   0    0    0   0    0   1   0 

Design 3= 
Design 4= 

S 1 

S 2 

S 3 

S 4 

S 5 

S 6 

S 7 

S 8 

S1  S2  S 3 S 4 S 5 S 6 S 7 S 8 

0   0   0    0    0   0    0   0 

0   0   0    0    0   0    1   0 

0   0   0    0    0   0    1   0 

0   0   0    0    0   0    1   0 

0   0   0    0    0   0    1   0 

0   0   0    0    0   0    1   0 

0   1   1    1    1   1    0   1 

S 1 

S 2 

S 3 

S 4 

S 5 

S 6 

S 7 

S 8 

S 9 

S1  S2  S 3 S 4 S 5 S 6 S 7 S 8 S9 

0   1   0    0    0   0    0   0   0 

0   0   0    0    0   1    0   0   0 

0   0   0    0    0   0    1   0   0 

0   0   0    0    0   0    0   1   0 

0   0   0    0    0   0    0   1   0 

0   0   0    0    0   0    0   1   0 

0   0   1    0    0   0    0   1   0 

0   0   0    1    0   0    0   1   0 

0   0   0    1    1   1    1   0   1 

0   0   0    0    0   0    0   1   0 
0   0   0    0    0   0    1   0 
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Fig 11. Sample Plan Drawn by Automated Design 

Intelligence 

Fig 12. Plan Example Drawn by Automated Design 

Intelligence 

  

Fig 13. Sample Plan Drawn by Automated Design 

Intelligence 

Fig 14. Plan Example Drawn by Automated Design 

Intelligence 

  

Fig 15. Sample Plan Drawn by Automated Design 

Intelligence 

Fig 16. Plan Example Drawn by Automated Design 

Intelligence 

 

To evaluate the algorithm's learning accuracy and 

validate the findings of this study, the Cyclin library 
and its learning and testing modules were utilized.  

A stratified approach was implemented, where 70% of 

the database—comprising dimensional and spatial 
feature vectors of residential spaces—was allocated as 

training data. The remaining 30% was reserved as test 

data to assess the algorithm's performance after the 
learning phase. 

This training and testing process was repeated 

twice to ensure robustness and consistency. As 
depicted in Figures 17 and 18, the algorithm's 

accuracy improved significantly, increasing from 70% 

in the initial iteration to 90% after the second 
repetition. This demonstrates the effectiveness of the 

training process and the refinement of the algorithm's 

predictive capabilities over successive iterations. 
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Fig 17. Algorithm Learning Rate with 75% Accuracy Fig 18. Algorithm Learning Rate with 93% Accuracy 

 

Figure 19 illustrates the workflow of the proposed 
design process using machine learning and 

evolutionary algorithms. Traditional approaches often 

relied exclusively on evolutionary algorithms or deep 

learning techniques for plan generation. However, 
these methods lacked the capability to incorporate user 

input during the design process. This research is novel 

in enabling users to actively specify their requirements 
during the plan generation process facilitated by 

artificial intelligence. 

The proposed workflow begins with the user 

inputting the required architectural features via a user 
panel. This information is transmitted to the server, 

which translates it into a vector of numerical attributes 

and sends it to the algorithm's core, specifically 
leveraging k-means clustering. The algorithm initiates 

the design process by automatically launching 

AutoCAD software and opening a new workspace. 
The vectorized user input is processed by a 

machine learning algorithm, which compares it with a 

database of trained architectural plan features using 

Euclidean distance calculations. Based on these 
comparisons, the system assigns labels to the database 

entries, ranking them in ascending order from 0 to 

infinity. These labels represent the relevance of each 
trained plan to the user’s specified requirements. 

The system identifies the optimal plan label using 

the K-nearest neighbor (K-NN) algorithm. The 
corresponding feature vector is then utilized in the 

plan generation process, initiated through Python 

scripts and specialized libraries developed for this 

study. These scripts automate the plotting of 
architectural plans in AutoCAD software. 

Simultaneously, the genetic algorithm ensures that 

the dimensions of the plan align with the user’s 
specified land parameters. The genetic algorithm also 

optimizes the dimensions of various plan elements, 

such as openings, using advanced computational 
methods, including standards from ASHRAE and 

Delft University of Technology. Details on this 

optimization process are addressed in a separate study. 

Upon completion of the design process, the final 
architectural plans, including energy calculations and 

other outputs, are saved in AutoCAD and additional 

file formats. These are packaged into a zip file and 
delivered to the user via the server. Furthermore, the 

system stores the design experience as a CSV file, 

including details such as dimensions, space syntax, 

room coordinates, and other relevant calculations. 
These saved datasets enable future development of the 

artificial intelligence system, enhancing the diversity 

and quality of generated architectural plans. 

RESEARCH LIMITATIONS 

This research faces several limitations. First, 

implementing the server and running multiple 

simultaneous algorithms require robust and advanced 

computational infrastructure. Second, as this work 
explores cutting-edge concepts in artificial 

intelligence and architecture, time and cost constraints 

pose significant challenges. Finally, the algorithm is 
currently tailored for residential villa designs, and its 

application to other typologies, such as commercial, 

office, or medical facilities, would necessitate the 

collection of domain-specific data and additional 
training of the AI model. 
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Fig 19. Part of the Process of Producing a Plan with Artificial Intelligence 

 

CONCLUSION 

The findings of this study demonstrate that employing 
feature vectors as part of supervised learning, 

combined with k-nearest neighbor and k-means 

clustering algorithms, effectively facilitates the 
identification of optimal designs. This approach 

enhances supervised machine awareness, enabling 

more informed decision-making during the design 

process. Additionally, the application of genetic 
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algorithms for searching the design space and 

evaluating plans based on the constraints of the 

designable land proves to be a robust solution. 
Notably, the algorithm significantly reduces the 

time required for the plan design process, achieving 

execution times ranging from 50 to 100 seconds for a 
single request sent to the server. This represents a 

substantial improvement in efficiency compared to 

traditional methods. 
Furthermore, the research highlights the utility of 

Python libraries in preserving the machine's design 

experiences as CSV files, enabling structured 

documentation of generated plans. These saved 

experiences are suggested for integration into 

reinforcement learning algorithms, offering the 
potential to generate more diverse and sophisticated 

design solutions in future iterations. 

In conclusion, this paper presents the Automated 
Design Intelligence (ADI) (Reza, 2023). Theory as a 

new theoretical framework for automating 

architectural design offers a potential shift in how 
design processes can be approached through artificial 

intelligence and machine learning. 

A.1. MATHEMATICAL MODEL 
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UIIV  0, 1, 0, 1, 0, 2, 0, 0, 1, 0, 0, 2, 1, 1, 1, 2, 2, 1 UIIV = 

0 (A.1) 

1 (A.2) 

0 (A.3) 

1 (A.4) 

0 (A.5) 

0 (A.6) 

1 (A.7) 

0 (A.8) 

0 (A.9) 
2 (A.10) 

1 (A.11) 

1 (A.12) 

1 (A.13) 

2 (A.14) 

2 (A.15) 

1 (A.16) 

0, 1, 0, 1, 0, 2, 0, 0, 1, 0, 0, 2, 1, 1, 1, 2, 2, 1 

0, 1, 0, 1, 0, 2, 0, 0, 1, 0, 0, 2, 1, 1, 1, 2, 2, 1 

Table. Nomenclature 

 

 

 

 

 

 

 

 

 

 

 

D IIt =                                                                                           (Vector plan information in the database)  

 

U IIV  =                                                                                       (Vector plan information from user input data)  

d (X. Y)  = √∑ 𝑑(𝑥𝑖 − 𝑦𝑖)
𝑛
→

∙
𝑖=1

   =   d (X. Y)  = ∑ |𝑥𝑖 − 𝑦𝑖|
𝑝
→
→

𝑖=1

 

D IIt (0, 1, 0, 1, 0, 2, 0, 0, 1, 0, 0, 2, 1, 1, 1, 2, 2, 1) and U IIV  (0, 1, 0, 1, 0, 2, 0, 0, 1, 0, 0, 2, 1, 1, 1, 2, 2, 1). 

d(u⃗ ,v⃗ ) = ∥u⃗ − v⃗ ∥  

 √
(0 − 0)2 + (1 − 1)2 + (0 − 0)2 + (1 − 1)2 +  (0 − 0)2 + (2 − 2)2 + (0 − 0)2 + (0 − 0)2 +  (1 − 1)2 + (0 − 0)2

 
 

+(0 − 0)2 + (2 − 2)2 + (1 − 1)2 + (1 − 1)2 + (1 − 1)2 + (2 − 2)2 + (2 − 2)2 + (1 − 1)2 = 

d(u⃗ ,v⃗ ) = ∥u⃗ − v⃗ ∥ =  √0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +  0 + 0 + 0 + 0 + 0  

d(u⃗ ,v⃗ ) = ∥u⃗ − v⃗ ∥ = √0  

d(u⃗ ,v⃗ ) = ∥u⃗ − v⃗ ∥ = 0                                    (No differences in input data and learning algorithm data) 

 

 

 

(A.1) User selection range  (A.9) Number of units 

(A.2) Location of the city  (A.10) Number of rooms 

(A.3) Width of the ground  (A.11) Number of population 

(A.4) Length of the ground  (A.12) Parking place 

(A.5) Land type  (A.13) Bedroom location 

(A.6) Building type  (A.14) Kitchen location 

(A.7) Window type  (A.15) Kitchen model 

(A.8) Number of floors  (A.16) Bathroom model 
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A.2. CONNECTIVITY/ADJACENCY 

 

                                                                                     U1 = (0X1,4 Y1),(0 X3,11 Y3),(5 X4,4 Y4),(5 X2,11 Y2) 

                                                                                                      U2 = (5X1,7 Y1),(5 X3,11 Y3),(7X4,7 Y4),(7 X2,11 Y2) 

                                                                                                      U3 = (7X1,7 Y1),(7 X3,11 Y3),(9X4,7 Y4),(9 X2,11 Y2 

Machine learning genetic floor plan generation (MLGAFPG)    U4 = (9X1,7 Y1),(9 X3,11 Y3),(12X4,7 Y4),(12 X2,11 Y2) 

                                                                                                      U5 = (12X1,0 Y1),(12 X3,11 Y3),(18X4,0 Y4),(18 X2,11 Y2) 

                                                                                                      U6 = (5X1,0 Y1),(5 X3,7 Y3),(12X4,0 Y4),(12 X2,7 Y2) 

                                                                                                      U7 = (0X1,0 Y1),(0 X3,4 Y3),(5X4,0 Y4),(5 X2,4 Y2) 

  

                                                                                          md1=
𝑦2−𝑦1

𝑥2−𝑥1
  =

11−4

5−0
 =

7

5
  

                                                                                           md2=
𝑦4−𝑦3

𝑥4−𝑥3
  =

4−11

5−0
 =

−7

5
 

                                                                                           X2 = A2 + B2 

U1 = (0X1,4 Y1),(0 X3,11 Y3),(5 X4,4 Y4),(5 X2,11 Y2)               X2 = 72 + 52 

                                                                                            X2 = 74 

                                                                                           X = √74 = 8.60 

                                                                                           md3=
𝑦2−𝑦3

𝑥2−𝑥3
  =

11−11

5−0
 = 0    

                                                                                           md4=
𝑦4−𝑦1

𝑥4−𝑥1
  =

4−4

5−0
 = 0         

 

                                                                                           md1=
𝑦2−𝑦1

𝑥2−𝑥1
  =

11−7

7−5
 =

4

2
       

                                                                                          md2=
𝑦4−𝑦3

𝑥4−𝑥3
  =

7−11

7−5
 =

−4

2
 

                                                                                          X2 = A2 + B2 

U2 = (5X1,7 Y1),(5 X3,11 Y3),(7X4,7 Y4),(7 X2,11 Y2)               X2 = 22 + 42 

                                                                                            X2 = 20 

                                                                                          X = √20 = 4.47 

                                                                                          md3=
𝑦2−𝑦3

𝑥2−𝑥3
  =

11−11

7−5
 = 0    

                                                                                          md4=
𝑦4−𝑦1

𝑥4−𝑥1
  =

7−7

7−5
 = 0 

 

                                                                                                 md1=
𝑦2−𝑦1

𝑥2−𝑥1
  =

11−7

9−7
 =

4

2
       

                                                                                                 md2=
𝑦4−𝑦3

𝑥4−𝑥3
  =

7−11

9−7
 =

−4

2
 

                                                                                                 X2 = A2 + B2 

U3 = (7X1,7 Y1),(7 X3,11 Y3),(9X4,7 Y4),(9 X2,11 Y2)      X2 = 22 + 42 

                                                                                                   X2 = 20 

                                                                                                 X  = √20 = 4.47 

                                                                                                 md3=
𝑦2−𝑦3

𝑥2−𝑥3
  =

11−11

9−7
 = 0 

                                                                                                 md4=
𝑦4−𝑦1

𝑥4−𝑥1
  =

7−7

9−7
 = 0 
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                                                                                                      md1=
𝑦2−𝑦1

𝑥2−𝑥1
  =

11−7

12−9
 =

4

3
 

                                                                                                      md2=
𝑦4−𝑦3

𝑥4−𝑥3
  =

7−11

12−9
 =

−4

3
 

                                                                                                     X2 = A2 + B2 

U4 = (9X1,7 Y1),(9 X3,11 Y3),(12X4,7 Y4),(12 X2,11 Y2)      X2 = 32 + 42 

                                                                                                       X2 = 25 

                                                                                                     X = √25 = 5 

                                                                                                     md3=
𝑦2−𝑦3

𝑥2−𝑥3
  =

11−11

12−9
 = 0 

                                                                                                      md4=
𝑦4−𝑦1

𝑥4−𝑥1
  =

7−7

12−9
 = 0 

 

({𝐿 . 𝑊}. {𝑆1 … 𝑆𝑁}. {𝐸1 … 𝐸𝑁}. {𝑆𝑇1 … 𝑆𝑇𝑁}. {𝐿𝑒1 … 𝐿𝑒𝑁}. {𝑃1 … 𝑃𝑁}. {𝑊1 … 𝑊𝑁})  

(𝐿𝑒𝑖{𝑅1𝑖 … 𝑅𝑁𝑖}. 𝐹ℎ(𝑖)) 

(𝑅1𝑖{𝐹𝑟1 … 𝐹𝑟𝑁}. {𝑊𝑟1 … 𝑊𝑟𝑁}. {𝐷𝑟1 … 𝐷𝑟𝑁}) 

(𝑆1𝑖(𝑥. 𝑦{𝑥. 𝑦. 𝑤. ℎ} … {𝑥𝑁. 𝑦𝑁. 𝑤𝑁. ℎ𝑁})𝑎. 𝑏) 

(𝐸1𝑖(𝑥. 𝑦{𝑥. 𝑦. 𝑤. ℎ} … {𝑥𝑁. 𝑦𝑁. 𝑤𝑁. ℎ𝑁})𝑎. 𝑏) 

𝑁𝑝 = (∑ 0 𝑥. 𝑦. 𝑤(∑ 0

𝐿

𝑖

∑(𝑊𝑟 + 𝐷𝑟) + 𝑁𝑠 + 𝑁𝑒))

𝑠

𝑖

 

𝑂𝐿𝐴 = ∑|(𝑂𝑙(𝑊(𝐿)% 60) − 𝑓𝑎(𝑁𝑝))| = 0))

𝑠

𝑖

 

𝐹(𝑖) = 𝐹𝑝𝑐𝑜(𝑖) + 𝐹𝑝𝑛𝑜(𝑖) + 𝐹𝑝𝑚𝑜(𝑖)   

𝐹(𝑖) =<> 

Table. Nomenclature 

S Space Fh Floor height 

E Elevator Fr boundary of spaces 

W Width of the ground Wr Windows 

L Length of the ground Dr Doors 

ST Stairs Fri Degrees of freedom 

Le Level OLA Final area 

P Parking Ol Occupancy level 

W Warehouse fa Area of spaces 

Fpco Connecting matrices of spaces Fpno  Neighborhood matrix 

Fpmo Communication space matrix   
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