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Abstract 
Landscape architecture confronts multifaceted challenges—from rapid urbanization and climate change to the complexity 

of managing large-scale ecological data—demanding advanced assessment methods to guide sustainable design and 

planning. As technological innovations reshape analytical capacities, this systematic review explores how emerging digital 

tools are enhancing landscape assessment across diverse domains. A comprehensive literature search across multiple 

databases initially identified 482 articles. Using the PRISMA methodology, a rigorous screening process narrowed this to 

92 studies for in-depth analysis. This review categorizes landscape assessment into four key domains: visual, 

psychological, spatial, and ecological. It further organizes simulation methods into four distinct groups and classifies 

applied technologies into three primary categories: data management, visualization and neuroscience, and 

photogrammetry. By systematically comparing technological methods, assessment indicators, and software applications 

across these classifications, this study offers evidence-based guidance for landscape architects in selecting context-

appropriate tools. The findings indicate notable advancements in objective assessment technologies—particularly in 
spatial and ecological domains—while highlighting ongoing challenges in integrating subjective human dimensions, such 

as psychological perception, into digital frameworks. The proposed taxonomy serves as a practical decision-making 

roadmap, enabling professionals to align simulation techniques and technological tools with specific evaluation goals—

whether addressing visual impacts, social behavior, ecological processes, or spatial configurations. Beyond mapping 

current technological trends, this review identifies critical gaps and opportunities at the intersection of landscape 

architecture and digital innovation, pointing to essential directions for future research and practice. 

Keywords: Landscape analysis, Applied technology, Simulation method. 

 

INTRODUCTION 

The integration of advanced technologies into 

landscape analysis has profoundly reshaped the field 
of landscape architecture. It offers innovative 

methodologies to tackle the complex challenges of 

contemporary environments (Hancock et al., 2017). 

From urbanization and climate change to the 
management of large-scale ecological data, 

technological advancements are transforming how 

professionals approach landscape analysis, design, 
and construction, enhancing precision, efficiency, and 

sustainability across all project phases (Shen et al., 
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2024). These interventions span a broad spectrum, 

encompassing both passive processes such as 

cognitive perception and analysis, and active 
interventions like design implementation and 

landscape management. 

A core component of landscape analysis is 
landscape cognition, rooted in environmental 

psychology, which seeks to understand the intrinsic 

characteristics of landscapes, human behavior, and 
perceptual responses. Traditional methods—

including content identification2 (Evered, 2016), 

landscape preference pattern analysis (Massoni et al., 

2016), and scenic beauty estimation (T. C. Daniel & 
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Meitner, 2001) — have predominantly relied on 

subjective tools, such as questionnaires and semantic 

differential scales (Negrín et al., 2017). However, 
recent advances in physiological measurement 

techniques, such as eye-tracking (C. Su et al., 2023) 

and electroencephalography (EEG) (Roe et al., 
2013), offer objective insights into human 

interactions with landscapes, bridging the gap 

between qualitative perception and quantitative 
analysis. 

In the active phases of landscape architecture, 

simulation technologies play a pivotal role by enabling 

designers to create, manage, and optimize 
interventions. Digital twins, for example, simulate 

physical environments over time to support urban 

planning (Batty, 2018) and scenario testing 
(Cheshmehzangi, 2016). LiDAR technology has 

revolutionized the development of 3D urban models, 

supporting Digital Elevation Model (DEM) generation 
(Kraus & Pfeifer, 2001), building extraction (Park & 

Guldmann, 2019), and urban parameterization 

(Bonczak & Kontokosta, 2019). These models 

facilitate dynamic visualization (Nebiker et al., 2010), 
spatial change detection (Richter et al., 2013), and 

landscape evaluation (Sedláček et al., 2020). Although 

digital tools are applicable throughout all stages of 
landscape architecture, this review focuses 

specifically on landscape analysis, where their use is 

both more specialized and technically nuanced. 

While technologies such as GIS (Richiardi et al., 
2023), remote sensing, and virtual reality (Bai, 2020) 

have advanced objective assessments—particularly in 

spatial and ecological domains—subjective 
dimensions, such as psychological and visual 

perceptions, remain underrepresented within 

technological frameworks. This review addresses this 
gap by systematically categorizing landscape 

assessment into four domains: visual, psychological, 

spatial, and ecological. It further classifies simulation 

methods into four typologies (e.g., agent-based 
modeling, Monte Carlo simulations), and groups 

applied technologies into three categories: data 

science, photogrammetry, and visualization and 
neuroscience. 

By leveraging these classifications, the review 

aims to offer landscape professionals a structured 
framework for understanding and selecting 

appropriate technologies based on specific analysis 

goals. Despite significant technological progress in 

related disciplines such as urban planning and 
architecture, the application of such methodologies in 

landscape architecture remains comparatively 

underexplored. This study addresses several critical 
objectives: identifying quantifiable landscape 

indicators, categorizing relevant technological 

approaches, determining strategic points of 

integration, exploring methodological synergies, and 

synthesizing emerging techniques for landscape 
analysis. 

Moreover, the review examines evolving trends in 

technology adoption and evaluates how various 
simulation methods correspond to existing software 

and hardware systems. Previous studies have seldom 

examined the relationships between landscape 
analysis domains (visual, ecological, social, and 

spatial), simulation types, and associated digital tools 

in a comprehensive and interconnected manner. In 

addition, existing literature is often confined to urban 
design or limited to bibliometric and scoping reviews, 

lacking broader systematic syntheses. 

This study pioneers a cross-domain evaluation that 
maps simulation methodologies to specific landscape 

assessment objectives. Aligning technologies with 

assessment domains and simulation typologies 
provides a practical decision-making roadmap for 

practitioners and researchers. It also addresses key 

research questions: How can simulation approaches 

and digital tools be matched to specific landscape 
analysis types to guide optimal method selection? 

Recognizing the diversity of methodologies and 

indicators proposed across case studies, this research 
also considers the potential of emerging 

technologies—including artificial intelligence—for 

comprehensive landscape evaluation. Importantly, it 

acknowledges an unresolved epistemological 
challenge: the universal applicability and validity of 

simulation methods across heterogeneous landscape 

paradigms. 

Landscape Assessment Approaches 

The classification of landscape assessment into four 
discrete yet interrelated domains—visual, 

psychological and social, spatial, and ecological—is 

predicated on the need to address the 

multidimensional nature of human-environment 
interactions through a structured analytical 

framework. This taxonomy reflects fundamental 

epistemological distinctions in how landscapes are 
perceived, experienced, and evaluated: visual 

assessment focuses on aesthetic perception and scenic 

quality (T. C. Daniel & Meitner, 2001); psychological 
and social evaluation examines cognitive, emotional, 

and behavioral responses (Gobster et al., 2007;  

Roe et al., 2013); spatial analysis quantifies 

morphological patterns and functional relationships 
(Bonczak & Kontokosta, 2019); and ecological 

assessment investigates biophysical processes and 

ecosystem services (Mairota et al., 2014). Such 
categorization enables targeted methodological 
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selection—for instance, eye-tracking for visual 

analysis (C. Su et al., 2023), EEG for psychological 

measurements (Schäfer et al., 2015), GIS for spatial 
modeling (Richiardi et al., 2023), or remote sensing 

for ecological monitoring (Wulder et al., 2019)—

while acknowledging their frequent interdependence 
in holistic landscape studies. This framework not only 

aligns with established theoretical paradigms in 

environmental psychology and landscape ecology but 
also addresses a critical gap in technological adoption 

by mapping tools to specific assessment objectives, 

thereby enhancing methodological rigor and practical 

applicability in both research and professional 
practice. 

Simulation Methods 

Simulation models are used for modeling dynamic 

spatial and ecological systems in order to examine 

landscape transformations across environmental and 
socioeconomic contexts, enabling researchers to 

evaluate system responses to diverse disturbance 

regimes. These computational approaches facilitate 

the interrogation of complex systemic interactions 
while supporting robust future projections. Based on 

our systematic review, we classify simulation methods 

into four distinct yet complementary typologies: 

• Statistical Analysis Simulations: This category 
encompasses quantitative techniques, including 

ANOVA, Pearson correlation analyses, and other 

inferential statistical methods that identify significant 
relationships between landscape variables. Such 

approaches enable rigorous hypothesis testing and 

pattern detection within ecological and spatial datasets 

(Aitken & Hayes, 2006). 

• Representational Modeling: Including both 
static and dynamic modeling approaches, this 

typology focuses on spatial representation through 

cartographic outputs and 3D visualizations. Advanced 
computational tools generate high-fidelity models for 

applications ranging from educational demonstrations 

to tourism planning (Y. Li & Xu, 2017), while real-

time modeling facilitates immediate feedback during 
design iterations (Wei et al., 2020). 

• Scenario Comparison and Projection: 

Exemplified by Monte Carlo techniques, these 

simulations employ probabilistic sampling to model 
complex system behaviors and future scenarios. Such 

methods provide critical insights for landscape 

management strategies, particularly for assessing 
ecosystem service outcomes like carbon sequestration 

potential (Aitken & Hayes, 2006), vegetation 

dynamics under climate change (Landguth et al., 

2017), forest landscape models (FLMs) (Mladenoff, 

2004), and optimization of infrastructure cost 

parameters (AZIZ, 2017). 

• Methodological Comparison: This analytical 

approach systematically evaluates different simulation 
techniques against common benchmarks, enabling 

researchers to identify optimal methodologies for 

specific landscape assessment contexts. These 
comparisons facilitate comprehensive environmental 

impact assessments and support evidence-based tool 

selection (MacDonald et al., 2022). 
Landscape graphs are widely used to represent 

ecological networks and analyze connectivity. Unlike 

individual-based models, they require less ecological 

data (Galpern et al., 2011). These models can 
prioritize vulnerable elements in need of protection 

and identify key locations to improve landscape 

connectivity (Foltête et al., 2014). Landscape graphs 
are efficient in addressing various operational issues, 

such as reforesting agricultural land, creating ponds, 

changing agricultural practices, designing wildlife 
corridors, and establishing linear infrastructures 

(Girardet et al., 2016). 

Simulation tools also contribute to transportation 

assessment (Kim et al., 2009), urban climate studies 
(Moonen et al., 2012), microclimate analysis (Kugler 

et al., 2019), and dynamic environmental assessments, 

such as flood modeling (Lin & Girot, 2014). Iterative 
prototyping enables continuous evaluation of design 

solutions (Cantrell & Holzman, 2015), reinforcing 

simulation's value in design management and 

operational performance. 
Collectively, these simulation typologies empower 

landscape professionals to: (1) quantify system 

relationships through statistical rigor, (2) visualize 
spatial dynamics via representational models, (3) 

project future conditions through scenario analysis, 

and (4) optimize methodological selection through 
comparative evaluation. This classification framework 

not only structures current analytical approaches but 

also highlights opportunities for methodological 

integration in addressing complex landscape 
challenges. 

Applied Technology 

In this review, to advance the analysis of articles more 

efficiently and consistently, the technologies used 

were classified into three general categories, which are 
discussed in more detail below. 
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Visualization and Neuroscience 

Immersive technology, including virtual reality (VR) 

and augmented reality (AR), is used interchangeably 

with extended reality. It enhances education by 
integrating learning environments and human 

interactions through computer technology and 

perceptual devices. VR creates fully virtual 
environments with realistic graphics and interactive 

content, while AR overlays virtual content onto the 

real world. Both technologies are increasingly blended 
in education to offer comprehensive educational 

content and support different learning scenarios. (Kee 

& Zhang, 2022) Landscaping technology involves 

analyzing image features from landscape images or 
photographs for landscape recognition, where high-

dimensional random vectors are mapped to a low-

dimensional feature space (Da‐Hong et al., 2020). In 
the VR environment, each learner is an individual, and 

their organs are completely immersed in the virtual 

reality environment, isolated from the real world. 

There are different tasks that can be analyzed after 3D 
modelling in VR technology, such as 3D 

measurement, daylight analysis, field of view analysis, 

and profile analysis (Trinidad-Fernández et al., 2021). 
Residents are influenced by their surroundings and 

have aesthetic reactions to green scenery (Gobster  

et al., 2007), which ultimately affects how they 
evaluate a landscape. Previous studies have used 

various methods for perception-oriented approaches 

(T. C. Daniel, 2001), including the semantic 

differential technique, scenic beauty estimation 
method (T. Daniel & Boster, 1976), and law of 

comparative judgment (Buhyoff & Wellman, 1980). 

However, quantitatively measuring human perception 
remains challenging and requires more holistic and 

innovative approaches (Zhao et al., 2020). 

Psychological methods such as 

electroencephalography (EEG) (Roe et al., 2013) and 
eye tracking (Cottet et al., 2018), commonly used in 

other majors, can now be applied to landscape 

evaluation. Eye tracking, in particular, is a valuable 
technique for objectively measuring attention by 

capturing eye movements and analyzing visual 

attention and perception. It has been widely used in 
various disciplines (Dupont et al., 2017). 

Eye tracking is a cost-effective and portable 

research tool, enabling the collection and analysis of 

big data for landscape preferences (Amati et al., 
2018). There is a need to analyze how landscape 

elements affect evaluation from the perspective of 

human perception (J. Li et al., 2020). This technology 
also offers a quantitative index and guidance for 

landscape optimization, like in rural areas (T. Su  

et al., 2022). 

EEG technology has also been applied to 

environmental perception and landscape assessment 

(Chang et al., 2008). Brain activity measurements are 
objective indicators of how engaged individuals are 

with their surroundings (Schäfer et al., 2015). Brain 

imaging can help measure the impact of unconscious 
stimuli (Teplan, 2002), often relying on EEG 

frequency features. EEG features, including 

frequency, time, and spatial domain features, represent 
brain activities. Many studies have used EEG (Liu et 

al., 2018), such as emotion, object structure, color, 

landscape, and animal image recognition. 

Data Science 

The integration of AI and smart technology is 

transforming various aspects of life, including 
streetscape design, where AI helps meet functional 

and aesthetic needs (Verma, 2024). Digital image 

processing, which originated in the 1950s and 
developed as a discipline in the 1960s, uses 

techniques like enhancement, restoration, coding, 

compression, transformation, segmentation, 

description, and classification to improve image 
quality and analyze data. Neural network image 

classification and algorithms, such as Scale Invariant 

Feature Transform (SIFT), are applied in streetscape 
design to analyze and classify images effectively (J. 

Yu & Zhang, 2022). 

The rise of big data has introduced challenges in 
managing and analyzing massive datasets, which 

traditional methods cannot handle. While large 

datasets enhance statistical power, high complexity 

increases the risk of false discoveries. Advances in 
data storage and mining have sparked global interest, 

with solutions including parallel processing and 

distributed systems like cloud computing and social 
networks (Breur, 2016). 

AI technologies, including machine learning and 

deep learning, are increasingly applied across domains 

such as landscape architecture (Hassija et al., 2024). 
Grasshopper, a Rhino software plug-in initially 

designed for product design and complex surface 

modeling, allows users to modify shapes through 
program logic dynamically (Sweatt et al., 2019). 

Unlike Grasshopper, machine learning algorithms are 

typically non-parametric. 
Shallow learning, which involves a machine 

learning model with one hidden layer, is exemplified 

by support vector machines (SVMs), a statistical 

approach for supervised learning (Luo, 2021). Deep 
learning, introduced in 2006 by Hinton et al., builds on 

artificial neural networks (ANNs) to emulate human 

intelligence and automate analytical model building 
(Sarker, 2021). Additionally, the Internet of Things 
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(IoT) facilitates the remote monitoring, control, and 

management of data like energy systems in buildings 

(Liao & Zhong, 2022). 
Geographic Information Systems (GIS) manage 

and analyze spatial data, enabling storage, analysis, 

and visualization of geographic information. Despite 
their capabilities, limitations in accuracy and data 

updates in tools like ArcGIS can hinder mapping 

processes (Zhou et al., 2021). GIS is widely applied in 
areas such as urban-landscape evaluation, tourism 

landscape analysis, settlement conservation planning, 

and three-dimensional visibility studies (Y. Zhang & 

Qiao, 2008). 
Public Participation Geographic Information 

Systems (PPGIS), introduced in 1996, integrate GIS 

technology to empower marginalized communities by 
combining local-level mapping and participatory 

methods. Advances in platforms like Google Maps, 

Google Earth, OpenStreetMap, and user-generated 
geographic data have broadened PPGIS applications. 

However, its effectiveness depends on participation 

rates, data quality, and sampling practices (Brown & 

Pullar, 2012). 
Building Information Modeling (BIM) automates 

parametric data identification in construction but is 

primarily tailored to architectural models. To enhance 
its use in landscape design, digital strategies focusing 

on scientific and objective analyses are proposed 

(Wang & Ma, 2022). 

Photogrammetry 

Traditional diagnostic methods like photographs, 

drawings, and topographical surveys have evolved 

with advancements in technology. Modern tools such 

as laser scanners, thermal cameras, Lidar, and UAVs 

(unmanned aerial vehicles) enable the creation of 
orthophotos, 3D models, and digital elevation models 

(Themistocleous, 2020). For documentation, 

techniques including aerial and terrestrial mapping, 
etc., can be combined (Lim et al., 2015). 

Lidar technology enhances precision in landscape 

design by creating high-density, three-dimensional 
point cloud models, applicable at city and regional 

scales (Urech et al., 2020). Similarly, UAVs have 

become indispensable in cultural heritage and 

archaeological research, providing high-resolution 
imagery for inaccessible areas and geospatial analysis 

(Themistocleous, 2020). 

Remote sensing, once a political tool, is now a 
crucial resource for environmental data, supporting 

urban and policy assessments (Wulder et al., 2019). It 

aids in urban heat island analysis, leveraging datasets 
like Landsat (Wellmann et al., 2020). Despite rapid 

urbanization in developing nations, remote sensing 

highlights the need to monitor stable or shrinking 

cities (Wolff & Wiechmann, 2018). 
The integration of 3S technology—Remote 

Sensing, GIS, and GPS—into education is enhancing 

environmental and landscape training by fostering 
specialization, scientific approaches, and spatial 

learning capabilities (X. Zhang et al., 2018). These 

tools enable practical problem-solving and efficient 

data management, advancing the field. 
 

 

 

 

 

 

 

Fig 1. Timeline of Progress in Data Science Through the Century 
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MATERIALS AND METHODS 

This systematic review employed a thematic approach 

to evaluate analytical methodologies in landscape 

architecture, with a particular focus on technology-

driven simulation and assessment. Based on this 

framework, five core keywords were selected for the 

literature search: simulation, landscape, analysis, 

architecture, and technology. Recognizing the 

growing influence of digital tools in the field, the 

search targeted studies published from the year 2000 

onward to encompass both foundational developments 

and contemporary advancements. To ensure the 

inclusion of the most recent technological 

innovations—such as artificial intelligence (AI), 

virtual reality (VR), and parametric modeling—

conference papers published after 2021 were also 

considered. Eligible studies were those that explicitly 

addressed either subjective or objective methods of 

landscape assessment in conjunction with 

technological applications. Studies were excluded if 

they lacked empirical data or focused solely on 

ecological metrics without any direct linkage to 

design, planning, or human-environment interactions. 

In addition to mainstream academic databases such as 

Scopus, Web of Science, and ScienceDirect, IEEE 

Xplore was included to ensure adequate coverage of 

computational methodologies, owing to its 

specialization in engineering and digital sciences. 

To ensure methodological rigor, the review process 

followed the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) guidelines. 

The use of PRISMA enhances transparency and 

reduces researcher bias by centering the analysis 

around clearly defined research questions (O’Brien & 

Mc Guckin, 2016). Its effectiveness has been 

demonstrated in recent environmental studies 

addressing climate resilience and ecological 

restoration, highlighting its relevance for addressing 

contemporary challenges in landscape architecture 

(Qasha et al., 2024). 

Literature Selection 

A comprehensive literature search was conducted on 

November 20, 2024, using four major academic 

databases: Web of Science, Scopus, ScienceDirect, 

and IEEE Xplore. The search strategy was designed to 

identify relevant publications from 2000 to 2024, 

reflecting both foundational studies and recent 

advancements in technology-driven landscape 

assessment. 

Five key thematic areas guided the search, 

targeting article titles, abstracts, and keywords. The 

primary search terms included: 

• Simulation or simulating, 

• Landscape, green space, green 

infrastructure, park, green belt, green wedge, 

ecology, protected area, heritage, or garden, 

• Analysis, assessment, evaluation, valuation, 

or assessing, 

• Architecture, design, planning, or 

management, 

• Technology or digital. 

To enhance inclusivity and reduce the risk of 

omitting relevant studies, synonyms and closely 

related terms were included for each category. 

Boolean operators were applied to structure the search 

logically, with "AND" used to connect term groups 

and "OR" employed within groups to link 

synonymous terms. 

This systematic search initially yielded a total of 

482 articles: 114 from Web of Science, 278 from 

Scopus (the highest yield), 37 from ScienceDirect, and 

53 from IEEE Xplore. To ensure currency and 

comprehensiveness, the search process was repeated, 

capturing the most recent publications and reinforcing 

the review’s relevance to emerging trends and 

innovations in the field. 

Literature Evaluation 

In the next step, all identified articles were imported 

into Rayyan (https://www.rayyan.ai/) for screening. 

Rayyan is a web-based application that facilitates 

semi-automated screening of preliminary article 

content with a high degree of accuracy (Olofsson et 

al., 2017). Its versatility and built-in features support 

duplicate detection, verification, collaborative 

screening, and decision-making in systematic reviews 

(Abreha, 2019). 

A total of 118 duplicate entries, 26 non-English 

articles, and 52 conference papers published prior 

to 2021 were excluded. In addition, a manual review 

of titles and fields was conducted to remove non-

relevant articles, resulting in 145 papers retained for 

abstract screening. 

In the final screening phase, the abstracts of these 

145 articles were carefully reviewed to ensure 

relevance to the research objectives. This process, 

conducted with increased precision, led to the 

selection of 92 articles for full analysis. 
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Fig 2. PRISMA Process of the Systematic Literature Review 

 

RESULTS 

Between 2000 and 2010, publications addressing 
landscape planning, urban planning, or urban design 

in relation to technological methodologies appeared 

sporadically. Theory-based articles were excluded 

from this review, resulting in the inclusion of only the 
earliest applied studies from this period. Notable 

examples include the evaluation of visual properties 

using GIS (Germino et al., 2001) and dynamic forest 
simulation (Cumming & Vernier, 2002). From 2010 to 

2017, the publication of relevant studies became more 

regular and systematic. Beginning in 2017, a marked 

increase in the number of published articles was 
observed, reflecting growing interest and 

advancements in technology-supported landscape 

assessment. 

The number of publications has steadily increased 

over the past decade, with 76% of the reviewed 

articles published after 2020. This upward trend 

reflects the growing integration of digital technologies 

in landscape assessment. The annual distribution of 
publications is illustrated in Figure 3. It is important 

to note that the literature search was conducted in 

November 2024, ensuring the inclusion of the most 

recent developments. 
Among the 92 selected articles, 86 were journal 

papers published across 54 different journals, while 

the remaining six were conference proceedings or 

book chapters. Figure 4 highlights the 10 journals in 

which more than one of the selected articles was 

published. 
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Fig 3. Number of Annual Published Articles 

 
 

 

Fig 4. Most Used Journals (at least 2 times) in the review (selected articles) 

 
 

 

Fig 5. Quartile Classification of Articles Focusing on the Country of Origin of Articles 

 

The majority of the journals were ranked in Q1 

(42%) and Q2 (35%), according to the SJR citation 

index. Figure 5 presents the classification of the 

selected articles by SJR quartile and the country of 
origin of each journal. Journals based in Switzerland 

(29%), the Netherlands (17%), the United Kingdom 

(15%), and the United States (11%) accounted for 

the largest share of publications. 
The 92 selected articles focus on technological 

approaches to landscape analysis and represent a wide 

global distribution, as illustrated in Figure 6. More 
than two-thirds of the studies were published by 

authors affiliated with institutions in China (53%), 

followed by the United States (8%), Germany (5%), 
Italy (4%), and Australia (3%). 

However, persistent challenges—such as data 
management (Shan & Sun, 2021), limited technical 

expertise, and resource constraints—continue to 

hinder widespread adoption, underscoring the need for 
innovative and adaptable solutions (Calkins, 

2005).This discussion explores the intersection of 

emerging technological methods with the broader 

challenges in landscape architecture, illustrating how 
these tools address specific needs while 

simultaneously introducing new complexities for 

practitioners. Within this context, the role of 
technology in advancing landscape analysis is 

critically examined, with particular emphasis on its 

transformative potential and the opportunities it 
presents for future development (Shen, 2023). 
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Landscape Architecture Challenges and Approaches 

This systematic review categorizes the identified 

challenges into five major themes (see Figure 7) for 

better clarity and analysis. The review highlights a 
spectrum of approaches to nature, from conservative 

to radical, with a growing emphasis on sustainability 

and future generations. Post-WWII urbanization led to 
intensified efforts to protect cultural and historical 

heritage, including historic urban landscapes 

(Bandarin & Van Oers, 2012). At the same time, 
population growth and human expansion have 

significantly altered land use and landscapes 

(Dadashpoor et al., 2019), causing fragmented and 

fragile environments (Merlotto et al., 2016). These 
transformations disrupt ecological functions 

(Mendoza-Ponce et al., 2021), impact the global 

carbon cycle (Zhu et al., 2021), climate systems 
(Thapa, 2021), biodiversity (Davison et al., 2021), and 

ecological integrity (Qu et al., 2021). Consequently, 

monitoring LULC changes has become essential for 

land management, planning, and conservation efforts 
(Abebe et al., 2022) 

Land use change analysis forms a critical 

foundation for understanding landscape patterns, 
including patch shape, area, quality, and spatial 

composition (Křováková et al., 2015). Geographic 

Information Systems (GIS) and remote sensing 
technologies play a central role in land use/land cover 

(LULC) mapping and change detection on a global 

scale (Mohamed et al., 2020). Analytical tools such as 

FRAGSTATS and APACK, in combination with 

landscape metrics, enable the quantitative 

description of landscape structure and support both 
environmental assessments and the study of ecological 

processes (Boongaling et al., 2018; Istanbuly et al., 

2021). These metrics are particularly valuable for 
addressing pressing challenges such as urban sprawl, 

loss of natural lands, and agricultural instability 

(Fiener et al., 2011), while also informing evidence-

based land use policies (Shafie et al., 2023). 

Climate change, driven by industrialization, 

global warming, and urbanization, introduces critical 

threats including sea-level rise and the urban heat 

island (UHI) effect, where urban areas exhibit 

significantly elevated temperatures due to altered 

land-use patterns (Farhadi et al., 2019). The impacts 
of UHI include health risks, economic losses, and 

increased energy consumption (Seletković et al., 

2023). 
Urbanization continues to disrupt ecosystems, 

abandoning marginal farmlands and transforming 

mountainous terrains. Data-intensive approaches in 

landscape architecture are increasingly essential for 
addressing large-scale environmental investigations 

and the analysis of complex indicator systems, thus 

facilitating more informed and sustainable planning 
strategies. Conversely, a positive trend is the growing 

emphasis on public engagement in urban planning, 

increasingly supported by smart city technologies 

and participatory decision-making frameworks 
(Gushchin & Divakova, 2022). 

 
 

 

 

Fig 6. Distribution Map of the Location of the Article Authors 
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Fig 7. Classification of Challenges into Three Levels and Categories 

 

DISCUSSION 

The integration of technological methods into 

landscape analysis has profoundly impacted the 

practice of landscape architecture, reshaping how 
professionals address the complexities of 

contemporary environmental challenges (Hancock et 

al., 2017). By examining the core phases of landscape 

architecture—analysis, design, and construction—it 
becomes evident that technology enhances precision, 

efficiency, and sustainability at each stage (Shen et al., 

2024). Despite these advancements, challenges such 
as data management (Shan & Sun, 2021), technical 

expertise, and resource constraints remain, 

underscoring the need for continued innovation 

(Calkins, 2005). This discussion explores the 
intersection of these technological methods with the 

broader challenges faced in landscape architecture, 

highlighting how emerging tools address specific 
needs while also raising new considerations for 

practitioners. From this perspective, the role of 
technology in advancing landscape analysis is 

critically evaluated, with a focus on its transformative 

impact and the areas for future development (Shen, 
2023). 

Technologically driven methodologies in 

landscape analysis can be systematically categorized 
into three key phases: input data, data processing, 

and output data. This tripartite structure mirrors the 

logical workflow of technological systems: input 

data (e.g., raw sensor measurements, user surveys, 
geographic datasets) provides the foundation for 

analysis; data processing (e.g., algorithmic modeling, 

machine learning, statistical normalization) 
transforms these inputs into actionable insights; and 

output data (e.g., visualizations, predictive reports, or 

design recommendations) delivers applied results. 
This classification ensures transparency, scalability, 

and reproducibility—qualities that are particularly 

important in interdisciplinary fields like landscape 
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assessment, where the integration of raw data (e.g., 

ecological metrics) with processed outputs (e.g., 

simulated designs) requires clearly defined, traceable 
stages to validate findings and align tools with the 

needs of stakeholders. 

However, while the input–processing–output 
framework offers a structured approach, it is not 

without limitations. One critical challenge is its ability 

to accommodate real-time data integration—for 
example, continuous environmental sensor feeds or 

live user interactions, which may require dynamic 

feedback mechanisms rather than linear processing. 

Similarly, cross-domain feedback loops present 
another complexity: in real-world landscape systems, 

social, ecological, and economic factors interact 

iteratively, meaning that outputs from one domain 
(e.g., user behavior models) often need to feed back 

into earlier stages of analysis or processing. These 

nonlinear relationships call for adaptive architectures, 
such as cyber-physical systems or iterative 

modeling environments, which extend beyond the 

traditional three-stage paradigm. Acknowledging 

these constraints emphasizes the importance of 
evolving from static workflows toward responsive, 

loop-based frameworks that better reflect the 

interconnected and dynamic nature of contemporary 
landscapes. 

To enable meaningful comparison, technological 

methods were grouped into three categories, 

indicating the phase of landscape architecture where 
each is most commonly applied, while recognizing 

that some methods span multiple stages. 

1. Based on Data Interaction, which includes: 
o Inputs: Receiving and Mapping Data  

o • Laser Scanner/LiDAR 

o • Drone Imaging 
o • Remote Sensing  

o • Virtual Reality (VR)  

o • Augmented Reality (AR)  

o • Eye-Tracking  
o • Electroencephalography (EEG) 

o Process: Data Processing  

o • Big Data  
o • ENVI-met  

o • Geographic Information Systems (GIS)  

o • Participatory GIS (PPGIS)  
o • Artificial Intelligence (AI)  

o • Internet of Things (IoT)  

o • Building Information Modeling (BIM)  

o • Machine Learning 
o Output: Data Representation  

o • Image-Based Modeling  

 
3  Drawing on the reviewed literature, the applied 

technologies are systematically categorized through an 

o • Digital Twin 

2. Based on Applied Technology
3
, which 

includes: 
o Neuroscience (NS) 

o Data Science (DM) (such as BIM, Big Data, 

GIS, Machine Learning, etc.) 
o Photogrammetry (PS) (including Remote 

Sensing and LiDAR) 

After reviewing the selected articles, we compared 
them within these categories, as summarized in  

Table 1 (see Appendix). This classification method 

allowed for a systematic exploration of trends and 

developments within each category of applied 
technology, as illustrated in Figure 8. 

In another classification (Fig. 9), different 

simulation types were explored. These types are 
categorized as follows: 

• (A) Statistical Methods: This category involves 

using statistical techniques such as ANOVA and 
Pearson correlation for analysis. 

• (B) Modeling: This includes methods focused on 

representing maps and conducting real-time modeling. 

• (C) Scenario Comparison and Future Projections: 
This category is concerned with techniques like Monte 

Carlo simulations used for comparing different 

scenarios or projecting future outcomes. 
• (D) Method Comparison: This type involves 

comparing various methodologies. 

Figure 9 illustrates the trend for each simulation 

type, highlighting how the application of these 
methods has evolved over time. An important point to 

note is that some articles utilize multiple simulation 

types in combination. For example, AC indicates a 
combination of type A (Statistical Methods) and type 

C (Scenario Comparison and Future Projections). 

In Fig. 10, the relationship between applied 
technology and simulation type is illustrated. This 

figure highlights the predominant simulation types 

used in each technology category. For instance, in the 

case of Neuroscience (as shown in Fig. 10), 
simulation type (A), which involves statistical 

methods, is the most frequently employed, accounting 

for 67% of the cases. 
The analysis field types in this article are classified 

as follows: S for spatial, P for psychological-social,  

E for ecological-environmental, and V for visual 
assessment. Fig. 11 illustrates the relationship 

between applied technology and analysis field type. 

This figure allows for identifying the most frequently 

used analysis type within each category. For example, 
in the case of Neuroscience (as shown in Fig. 11), 

inductive approach, employing a three-tier clustering 

framework. 
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visual analysis (V) is the most prevalent, comprising 

58% of the cases. 

The relationships among the three applied 
technology domains are illustrated in Figure 12, 

alongside the second categorization method (i.e., input, 

processing, and output data). This figure offers a 
comprehensive visualization of how specific methods 

within each domain interact and contribute to various 

stages of data handling. It emphasizes the integrative 

nature of these domains, showcasing their role in 
ensuring a smooth flow of information from data 

acquisition to analysis and, ultimately, to the final 

output. 
 

 

 

Fig 8. Technological Method Trends over the Recent Years 

 

 

Fig 9. Simulation Type Trends over the Recent Years 

 

 

Fig 10. The Relationship between Applied Technologies and Simulation Types 
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Additionally, the relationships among the three 

technology domains—Neuroscience, Data Science, 

and Photogrammetry—as well as their connection to 
analysis fields and simulation types, are depicted in 

the Sankey diagram presented in Fig. 13. This diagram 

also includes the categorization of methods, providing 

a clear visualization of how these domains align with 

different analysis approaches and simulation 
techniques. 

 

 

Fig 11. The Relationship between Applied Technologies and Analysis Field Types 
 

 

Fig 12. Sankey Diagram of Technological Methods in Applied Technology and Interactive Data Categories 
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Fig 13. Sankey Diagram of Technological Methods in the Analysis Field and Simulation Type Categories  

 
Several software tools and applications are 

commonly employed for landscape simulation. For 

example, GIS software is frequently used to generate 
3D models of terrain and prepare essential data for 

landscape simulation (Dinkov & Vatseva, 2016). Tree 

growth software and landscape visualization tools 

help explore future possibilities and landscape 
succession (Ackerman et al., 2021). Landscape 

Builder is utilized to create spatially explicit 

landscapes using classified satellite imagery and 
multi-year data collection (Dijak, 2013). 

In this review, the top five software tools identified 

are ArcGIS, AutoCAD, SPSS, Matlab, and 
Photoshop (Fig. 14). These simulation software tools 

are integral to landscape design, particularly for 

climate adaptation planning and landscape 

development. However, the implementation of these 
tools is not without its challenges, including issues 

related to interoperability and data loss (Keibach & 

Shayesteh, 2022). Depending on the specific 
objectives of the landscape analysis and the available 

data, these tools can be used individually or in 

combination to optimize outcomes. 

The review identified the most frequently utilized 
indicators across the analyzed studies, emphasizing 

their prevalence and relevance in diverse applications. 

The Digital Elevation Model (DEM) emerged as the 
most widely employed indicator, appearing in 15 

instances, followed by the Normalized Difference 

Vegetation Index (NDVI), which was used in 10 
studies. Land Surface Temperature (LST) and 

Triangulated Irregular Network (TIN) were each 

applied in 5 cases, while the Digital Surface Model 

(DSM), Land Use and Land Cover (LULC), and 
electroencephalogram (EEG) waves—particularly 

alpha waves—were each referenced 4 times (Fig. 15). 

The dominance of DEM and NDVI can be 

attributed to their accessibility, standardization, and 

integration into widely used geospatial platforms 

(e.g., GIS software, remote sensing tools). DEM data, 

for instance, is often freely available through global 
datasets (e.g., SRTM, ASTER GDEM), making it a 

foundational input for terrain analysis. Similarly, 

NDVI’s widespread adoption stems from its robust, 

standardized formulation for vegetation monitoring, 

as well as its direct derivation from widely accessible 

satellite imagery (e.g., Landsat, Sentinel-2). In 

contrast, indicators like LST and TIN, while valuable, 
may require more specialized data processing or 

higher-resolution inputs, limiting their frequency of 

use. 
This distribution underscores the interdisciplinary 

nature of landscape and environmental analyses, 

where indicators are selected based on their ability to 

capture both physical characteristics (e.g., 

elevation, vegetation cover) and cognitive 

dimensions (e.g., EEG responses). The variability in 

indicator usage reflects the trade-offs between data 

availability, methodological complexity, and 

analytical objectives, highlighting the need for 

context-specific tool selection in holistic assessments. 
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Fig 14. Most Used Software in Selected Articles 

 

 

 

Fig 15. Most Used Indicators in the Selected Articles 

 

In this review, we encountered various conceptual 

approaches, such as modeling and replicating real-

world phenomena in the virtual domain (e.g., digital 
twins), investigating and comparing different 

scenarios, algorithms, or methods, and utilizing 

statistics and charts to depict variance. Based on these 
distinctions, we categorized the articles into three 

main groups: first, articles that explored methods 

driven by the novelty of the technological issue (56%); 

second, articles that focused on the design (4%) or 
analysis (40%) of existing technologies applied in case 

studies. To illustrate differences, several studies 

employed statistical methods, including Pearson 

correlation (38%), ANOVA (31%), and the Mann-

Whitney test (19%), among others. 

CONCLUSION 

The integration of advanced technologies into 

landscape evaluation has revolutionized 
environmental management, planning, and design, 

offering robust solutions to complex challenges, from 

quantifying ecological dynamics to simulating socio-

environmental futures. This review demonstrates how 

hybrid methodologies, combining traditional practices 

with innovations like agent-based modeling and 
machine learning, enable holistic analysis of 

landscapes in all aspects. In this study, an effort was 

made to comprehensively examine the technologies 
applied in landscape architecture and to explore the 

relationships between different methods and analytical 

approaches; however, the breadth of the subject 

prevented a more detailed categorization of each 
technological method or analytical approach. 

This systematic review establishes a structured 

framework for aligning simulation methods and 
digital tools with specific landscape assessment 

approaches to guide evidence-based methodological 

selection. For visual assessment, immersive 
technologies like VR combined with eye-tracking 

systems enable quantitative evaluation of aesthetic 

preferences, while 3D modeling supports scenario 

visualization. Psychological and social assessments 
benefit from agent-based modeling integrated with 

biometric sensors (EEG) and participatory GIS, 

capturing both behavioral patterns and emotional 
responses. Spatial analysis is best served by GIS-
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based cellular automata and LiDAR processing, which 

effectively quantify morphological changes and 

connectivity. Ecological evaluation requires 
probabilistic methods like Monte Carlo simulations 

paired with remote sensing and AI-driven biodiversity 

monitoring to address complex biophysical 
relationships. 

The proposed matching system emphasizes that 

optimal method selection depends on three key 
factors: assessment priorities (objective metrics vs. 

human perception), data availability (existing datasets 

vs. new sensor deployments), and project scale (site-

specific vs. regional analyses). While significant 
progress has been made in objective assessment tools, 

persistent gaps remain in standardizing subjective 

evaluation protocols and improving interoperability 
between technical systems (e.g., BIM-GIS 

integration). Future development should prioritize 

hybrid approaches that combine quantitative precision 
with qualitative depth, such as explainable AI for 

cultural landscape valuation. 

For practitioners, this means aligning technologies 

with project contexts: for example, LiDAR-based 
analysis may be most effective for large-scale terrain 

modeling or regional vegetation mapping, while EEG-

based tools could provide valuable insights into 
human perception in projects emphasizing 

experiential quality, such as urban parks or heritage 

landscapes. By adopting this tailored framework, 

landscape professionals can more effectively navigate 
the growing array of technological solutions, ensuring 

both methodological rigor and context-sensitive 

outcomes across all assessment domains. 
Ultimately, digital innovation will only advance 

sustainable landscape goals when guided by 

integrative, human-centered design logics that 
reconcile ecological functionality with cultural 

meaning. 
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